Yadong Zheng, Luyan Zhang, Laura Bonfili, Luisa de Vivo and Anna Maria Eleuteri and Michele Bellesi

Abstract: Background: Insufficient sleep is a serious public health problem in modern society. It leads to increased risk of chronic diseases, and it has been frequently associated with cellular oxidative damage and widespread low-grade inflammation. Probiotics have been attracting increasing interest recently for their antioxidant and anti-inflammatory properties. Here, we tested the ability of probiotics to contrast oxidative stress and inflammation induced by sleep loss. Methods: We administered a multi-strain probiotic formulation (SLAB51) or water to normal sleeping mice and to mice exposed to 7 days of chronic sleep restriction (CSR). We quantified protein, lipid, and DNA oxidation as well as levels of gut–brain axis hormones and pro and anti-inflammatory cytokines in the brain and plasma. Furthermore, we carried out an evaluation of microglia morphology and density in the mouse cerebral cortex. Results: We found that CSR induced oxidative stress and inflammation and altered gut–brain axis hormones. SLAB51 oral administration boosted the antioxidant capacity of the brain, thus limiting the oxidative damage provoked by loss of sleep. Moreover, it positively regulated gut–brain axis hormones and reduced peripheral and brain inflammation induced by CSR. Conclusions: Probiotic supplementation can be a possible strategy to counteract oxidative stress and inflammation promoted by sleep loss.

Nutrients. 2023; 15(6):1518. https://doi.org/10.3390/nu15061518